Heterokaryon myotubes with normal mouse and Duchenne nuclei exhibit sarcolemmal dystrophin staining and efficient intracellular free calcium control.
نویسندگان
چکیده
Duchenne and mdx muscle tissues lack dystrophin where it normally interacts with glycoproteins in the sarcolemma. Intracellular free calcium ([Ca2+]i) is elevated in Duchenne and mdx myotubes and is correlated with abnormally active calcium-specific leak channels in dystrophic myotubes. We fused Duchenne human and normal mouse myoblasts and identified heterokaryon myotubes by Hoechst 33342 staining to measure the degree to which dystrophin introduced by normal nuclei could incorporate throughout the myotube at the sarcolemma and restore normal calcium homeostasis. Dystrophin expression in myotubes was determined by immunofluorescence and confocal laser scanning microscopy. Dystrophin was expressed at the sarcolemma in normal mouse and heterokaryon myotubes, but not in Duchenne myotubes. In heterokaryons, extensive dystrophin localization occurred at the sarcolemma even where only Duchenne nuclei were present, indicating that dystrophin does not exhibit nuclear domains. Heterokaryon, normal mouse and Duchenne myotube [Ca2+]i was measured using fura-2 and fluorescence ratio imaging. Heterokaryon and normal mouse myotubes were found to maintain similar levels of [Ca2+]i. In contrast, Duchenne myotubes had significantly higher [Ca2+]i (p < 0.001). Furthermore, the ability of heterokaryons to maintain normal [Ca2+]i did not depend on greater numbers of normal nuclei than Duchenne being present in the myotube. These results support the view that dystrophin expression in heterokaryons allows for efficient control of [Ca2+]i.
منابع مشابه
Characterisation of dystrophin during development of human skeletal muscle.
Dystrophin, the 427 x 10(3) Mr product of the Duchenne muscular dystrophy (DMD) gene, was studied in human foetal skeletal muscle from 9 to 26 weeks of gestation. Dystrophin could be detected from at least 9 weeks of gestation at the sarcolemmal membrane of most myotubes, though there was differential staining with antibodies raised to various regions of the protein. Dystrophin immunostaining i...
متن کاملCo-localization and molecular association of dystrophin with laminin at the surface of mouse and human myotubes.
In Duchenne muscular dystrophy (DMD), deficiency of the protein dystrophin results in necrosis of muscle myofibres, associated with lesions in the sarcolemma and surrounding basal lamina. Dystrophin has been proposed to be a major component of the sub-sarcolemmal cytoskeleton involved in maintaining the integrity of the myofibre plasma membrane, and is known to associate with a group of sarcole...
متن کاملSarcoplasmic reticulum Ca permeation explored from the lumen side in mdx muscle fibers under voltage control
Duchenne muscular dystrophy is a very severe muscle disease that is characterized by progressive skeletal muscle wasting. Duchenne muscular dystrophy is provoked by mutations in the gene encoding the protein dystrophin, which lead to the total absence of this protein in skeletal muscles. In normal skeletal muscle, dystrophin is located underneath the sarcolemma, and interacts with the F-actin c...
متن کاملA Comparative Study of N-glycolylneuraminic Acid (Neu5Gc) and Cytotoxic T Cell (CT) Carbohydrate Expression in Normal and Dystrophin-Deficient Dog and Human Skeletal Muscle
The expression of N-glycolylneuraminic acid (Neu5Gc) and the cytotoxic T cell (CT) carbohydrate can impact the severity of muscular dystrophy arising from the loss of dystrophin in mdx mice. Here, we describe the expression of these two glycans in skeletal muscles of dogs and humans with or without dystrophin-deficiency. Neu5Gc expression was highly reduced (>95%) in muscle from normal golden r...
متن کاملA nitrate ester of sedative alkyl alcohol improves muscle function and structure in a murine model of Duchenne muscular dystrophy.
Nitric oxide (NO) has major physiological and cellular effects on muscle growth, repair, and function. In most muscle biopsies from humans with myopathies, sarcolemma-localized neuronal nitric oxide synthase (nNOS) is either reduced or not detected, particularly in dystrophin-deficient Duchenne muscular dystrophy (DMD). Abnormal NO signaling at the sarcolemmal level is integrally involved in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 4 9 شماره
صفحات -
تاریخ انتشار 1993